Matplotlib

Albert-Ludwigs-Universitit Freiburg

FREIBURG

2
=

Alejandro F. Bujan

Bernstein Center Freiburg

Scientific Python programming course, 12. November 2013

Outline

Introduction
What is matplotlib?
Matplotlib modules: pylab and pyplot

Using matplotlib in a python shell
Ipython to the rescue
Controlling interactive updating

How to plot with Matplotlib
Intro
But, how do | plot?
Customizing objects
Object containers

How to

Outline

Introduction
What is matplotlib?

UNI

O
&
2
a
7]
o
[* 9

/32

What is matplotlib?

matplotlib is a plotting library for the Python programming
language and its NumPy numerical mathematics extension.

/32

Outline

Introduction

Matplotlib modules: pylab and pyplot

/32

Matplotlib, pylab, and pyplot: how are they

related?

matplotlib is the whole package

pylab is a matplotlib module that gets installed alongside
matplotlib

pyplot is a matplotlib module

Pylab (the MATLAB-style)

Pylab combines the pyplot functionality (for plotting) with the
numpy functionality (for mathematics and for working with arrays)
in a single namespace, making that namespace (or environment)
even more MATLAB-like.

from pylab import *

x = arange(0, 10, 0.2)
y = sin(x)

plot(x, y)

show ()

Pyplot

Pyplot provides the state-machine interface to the underlying
plotting library in matplotlib. This means that figures and axes are
implicitly and automatically created to achieve the desired plot.

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 10, 0.2)

y = np.sin(x)

plt.plot(x, y)

plt.show ()

Object-oriented programming with Pyplot

O
-4
-
~a
zl.l.l
SE

For full control of your plots and more advanced usage, use the
pyplot interface for creating figures, and then use the object
methods for the rest.

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 10, 0.2)

y = np.sin(x)

fig = plt.figure()

ax = fig.add_subplot(111)
ax.plot(x, y)

plt.show ()

Observation

9/32

Outline

Using matplotlib in a python shell
Ipython to the rescue

10/32

Ipython to the rescue

Fortunately, ipython, an enhanced interactive python shell
becomes matplotlib aware when you start ipython in the pylab
mode.

bujan@laptop:~$ ipython -pylab

Python 2.7.3 (default, Apr 10 2013, 06:20:15)
IPython 0.12.1 -- An enhanced Interactive Python.
In [1]: x = randn(10000)

In [2]: hist(x, 100)

UNI

O
&
2
a
7]
o
[* 9

11/32

Outline

Using matplotlib in a python shell

Controlling interactive updating

12/32

Controlling interactive updating

UNI

O
&
2
a
7]
o
[* 9

The interactive property of the pyplot interface controls whether a
figure canvas is drawn on every pyplot command. If interactive is
False, then the figure state is updated on every plot command, but
will only be drawn on explicit calls to draw (). When interactive is
True, then every pyplot command triggers a draw.
isinteractive() returns the interactive setting True|False
ion() turns interactive mode on
ioff () turns interactive mode off

draw() forces a figure redraw

13/32

Controlling interactive updating

UNI

O
&
2
a
7]
o
[* 9

Interactive example

import matplotlib.pyplot as plt
plt.ion ()

plt.plot([1.6, 2.7])
plt.title("interactive test")
plt.xlabel ("index")

ax = plt.gca()

ax.plot([3.1, 2.2])

plt.draw ()

14/32

Controlling interactive updating

UNI

O
&
2
a
7]
o
[* 9

Non-interactive example

import matplotlib.pyplot as plt
plt.ioff ()

plt.plot([1.6, 2.7])

plt.show ()

import numpy as np

import matplotlib.pyplot as plt

plt.ioff ()

for i in range(3):
plt.plot(np.random.rand(10))

plt.show ()

15/32

Use show ()

O
-4
-
~a
zl.l.l
SE

When you want to view your plots on your display, the user
interface backend will need to start the GUI mainloop. This is
what show() does.

Observation

16/32

Outline

UNI

O
&
2
a
7]
o
[* 9

How to plot with Matplotlib
Intro

17/32

Matplotlib levels

UNI

O
&
2
a
7]
o
[* 9

There are three layers to the matplotlib API:
FigureCanvas is the area onto which the figure is drawn.

Renderer is the object which knows how to draw on the
FigureCanvas.
Artist is the object that knows how to use a renderer to paint
onto the canvas.
primitives: the standard graphical objects we want to paint
onto our canvas (Line2D, Rectangle, Text, ...).
containers: the places to put them (Axis, Axes and Figure).

18/32

Outline

How to plot with Matplotlib

But, how do | plot?

19/32

How do I plot?

UNI

O
&
-
a
7]
o
[* 9

The standard use is to create a Figure instance,

import matplotlib.pyplot as plt

import numpy as np

fig = plt.figure(l,figsize=(8,4))

figure number, size of the figure in inches

use the Figure to create one or more Axes or Subplot instances,

ax = fig.add_subplot(1,2,1)

one row, two columns, first plot

ax2 = fig.add_axes([0.5, 0.1, 0.5, 0.91)

list of [left, bottom, width, height]

values in 0-1 relative figure coordinates

20/32

How do I plot?

O
[«
2
i
[+
LL

: o 2
and use the Axes instance helper methods to create the primitives =
(2D lines in this case).

t = np.arange(0.0, 1.0, 0.01)

S = np.sin(2*np.pix*t)

¢ = np.cos(2*np.pixt)

line, = ax.plot(t, s, color='blue', linewidth=2)
line2, ax2.plot(t, c, color='red', linewidth=4)
plt.show ()

19502 04 o6 08 10 85 02 02 06 08 1o
21/32

Outline

UNI

O
&
2
a
7]
o
[* 9

How to plot with Matplotlib

Customizing objects

22/32

Customizing your objects

Every element in the figure is represented by a matplotlib Artist,
and each has an extensive list of properties to configure its
appearance. Each of the properties is accessed with an
old-fashioned setter or getter.

lw = line.get_linewidth()
line.set_linewidth (2x*1w)

If you want to set a number of properties at once, you can also use
the set method with keyword arguments.

line.set(color="'green',linewidth=2)

23/32

Customizing your objects

2
If you are working interactively at the python shell, a handy way to
inspect the Artist properties is to use the
matplotlib.artist.getp() function (simply getp() in pylab),
which lists the properties and their values.

Use the matplotlib.artist.setp() command to set multiple
properties on a list of lines.

lines = plt.plot(xl, yi1, x2, y2)

use keyword args

plt.setp(lines, color='r', linewidth=2.0)

or MATLAB style string value pairs
plt.setp(lines, 'color', 'r', 'linewidth', 2.0)

24 /32

Outline

UNI

O
&
2
a
7]
o
[* 9

How to plot with Matplotlib

Object containers

25/32

Object containers

Now that we know how to inspect and set the properties of a given
object we want to configure, we need to now how to get at that
object.

As you add subplots and axes to the figure these will be appended
to the Figure.axes. Similarly when you call ax.plot, it creates a
Line2D instance and adds it to the Axes.lines list.

for axes in fig.axes:
for lines in axes.lines:
lines.set_color('magenta')

26 /32

Object container

UNI

O
&
2
a
7]
o
[* 9

Figure and Axes contain a Patch (which is a Rectangle instance for
Cartesian coordinates and a Circle for polar coordinates). This
patch determines the shape, background and border of the plotting
region

ax = fig.add_subplot(111)
rect = ax.patch # a Rectangle instance
rect.set_facecolor('green')

27/32

Object container

Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are
stored as instance variables xaxis and yaxis.

for label in axes.xaxis.get_ticklabels():
label.set_color('orange')

Note that the Axes contains many helper methods which forward
calls on to the Axis instances so you often do not need to work
with them directly unless you want to.

for label in axes.get_xticklabels():
label.set_color('orange')

28/32

Example

fig = plt.figure(2,figsize=(4,4))

fig.clf ()

rect = fig.patch # a rectangle instance

rect.set_facecolor('yellow')

axl = fig.add_axes([0.1, 0.5, 0.4, 0.4])

rect = axl.patch

rect.set_facecolor('gray')

for label in axl.xaxis.get_ticklabels():
label is a Text instance
label.set_color('red')
label.set_rotation (45)
label.set_fontsize (16)

for line in axl.yaxis.get_ticklines():
line is a Line2D instance
line.set_color('green')
line.set_markersize (25)

line.set_markeredgewidth (3)
29/32

0.0
Q * 6 © O
SRR

UNI

FREIBURG

30/32

How to cite Matplotlib

Q@article{Hunter2007,

Author = {Hunter, John D.},

Journal = {Computing In Science \& Engineering},
Month = {May-Jun},

Number = {3},

Pages = {90--95},

Publisher = {IEEE COMPUTER SO0C},

Times-Cited = {217},

Title = {Matplotlib: A 2D graphics environment},
Type = {Editorial Materiall,

Volume = {9},

Year = {2007}}

UNI

O
&
2
a
7]
o
[* 9

31/32

That’s all folks!

Don’t forget

Bibliography

[M Hunter, John D. Matplotlib: A 2D graphics environment.

Computing In Science & Engineering, IEEE COMPUTER
SOC, 2007

FREIBURG

2
=

32/32

	Using matplotlib in a python shell
	Ipython to the rescue
	Controlling interactive updating

	How to plot with Matplotlib
	Intro
	But, how do I plot?
	Customizing objects
	Object containers

	How to

